Neurobiology of Disease Deletion of Mint Proteins Decreases Amyloid Production in Transgenic Mouse Models of Alzheimer’s Disease
نویسندگان
چکیده
Mints/X11s are neuronal adaptor proteins that bind to amyloidprecursor protein (APP). Previous studies suggested that Mint/X11 proteins influence APP cleavage and affect production of pathogenic amyloid(A ) peptides in Alzheimer’s disease; however, the biological significance of Mint/X11 binding to APP and their possible role in A production remain unclear. Here, we crossed conditional and constitutive Mint1, Mint2, and Mint3 knock-out mice with transgenic mouse models of Alzheimer’s disease overproducing human A peptides. We show that deletion of all three individual Mint proteins delays the age-dependent production of amyloid plaque numbers and A 40 and A 42 levels with loss of Mint2 having the largest effect. Acute conditional deletion of all three Mints in cultured neurons suppresses the accumulation of APP C-terminal fragments and the secretion of ectodomain APP by decreasing -cleavage but does not impair subsequent -cleavage. These results suggest that the three Mint/X11 proteins regulate A production by a novel mechanism that may have implications for therapeutic approaches to altering APP cleavage in Alzheimer’s disease.
منابع مشابه
Cholinergic neuropathology in a mouse model of Alzheimer's disease
Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...
متن کاملCholinergic neuropathology in a mouse model of Alzheimer's disease
Transgenic mice over-expressing mutant human amyloid precursor protein (PDAPP mouse) develop several Alzheimer’s disease (AD)-like lesions including an age-related accumulation of amyloid-?-containing neuritic plaques. Although aged, heterozygous PDAPP mice also exhibit synaptic and glial cell changes, that is characteristic of AD pathology, no evidence of neurodegeneration has been observed. T...
متن کاملP-111: An Attempt to Facilitate the Production of Transgenic Mouse As A Model for Gene Therapy of Gaucher Disease
Background: Gaucher disease is an autosomal recessive inherited lysosomal storage disorder that affects many of the body's organs and tissues by defective function of the catabolic enzyme β-glucocerebrosidase. Gene therapy is one of the efficient ways for treatment of this disease. Due to the lack of appropriate animal models, in the field of gene therapy little progress has been done.Mate...
متن کاملVitamin E therapy prevents the accumulation of congophilic amyloid plaques and neurofibrillary tangles in the hippocampus in a rat model of Alzheimer’s disease
Objective(s): Vitamin E may have beneficial effects on oxidative stress and Aβ-associated reactive oxygen species production in Alzheimer’s disease. But, the exact role of vitamin E as a treatment for Alzheimer’s disease pathogenesis still needs to be studied. Hence, we examined the therapeutic effects of vitamin E on the density of congophilic amyloid plaques and neur...
متن کاملP107: Using Nano Particles as a Novel Application for Alzheimer’s Disease; an Effective Endeavor for Drug Delivery
As the most common cause of dementia among the elderly results in cognitive and ‎behavioral impairment, Alzheimer’s disease (AD) is characterized with aggregation of senile ‎plaques (Beta-amyloid protein), cortical atrophy and ventricular enlargement. Unfortunately, ‎conventional methods like acetyl cholinesterase inhibitor drugs, are not so effective owing to ‎restrictive...
متن کامل